PLANE SECTIONS OF CENTRALLY SYMMETRIC CONVEX BODIES

BY

S. ROLEWICZ

ABSTRACT

The note contains an example of three plane convex centrally symmetric figures P_1 , P_2 , P_3 such that no centrally symmetric 3-dimensional body has three coaxial central affinely equivalent to P_1 , P_2 , P_3 respectively.

In 1933 S. Banach and S. Mazur [1] proved that the space C[0, 1] of all continuous functions on the segment [0, 1] is universal, with respect to isometry, for all separable Banach spaces. This means that for each separable Banach space X there exists a subspace of C[0, 1] which is isometric to X.

Simultaneously the following question arose. Does there exist a finite dimensional space universal (with respect to isometry) for all two-dimensional Banach spaces? in geometric language this means: Is there an *n*-dimensional, centrally symmetric, convex body K such that for each plane centrally symmetric convex set P we can find a two-dimensional section \tilde{P} through the center of K, such that \tilde{P} is affinely equivalent to P.

The answer is negative. B. Grünbaum [3] established that there is no 3-dimensional K with this property, while C. Bessaga [2] proved the non-existence for general n. Additional results were obtained by V. Klee [4].

It follows from these proofs that there exists a number i_n , and plane, centrally symmetric convex sets P_1, \ldots, P_{i_n} , with the property: no *n*-dimensional centrally symmetric convex body K has two-dimensional sections $\tilde{P}_1, \ldots, \tilde{P}_{i_n}$, through its center, such that \tilde{P}_j is affinely equivalent to P_j for $j = 1, \ldots, i_n$.

Basing on Bessaga's arguments an estimate of i_n could be obtained; however, it would probably be very far from the minimal possible value of i_n .

It may be conjectured that $\inf i_n = n + 1$, but this conjecture is still unsolved even for n = 3.

Received June 17, 1964; revised June 20, 1966.

S. ROLEWICZ

In this note we shall consider a related problem of A. Pełczyński.

Suppose that we consider not all sections of a 3-dimensional centrally symmetric convex body K, but only sections which contain some fixed straight line passing through the center of K. What is the least number k of plane, centrally symmetric convex sets P_1, \ldots, P_k , with the property: For no centrally symmetric 3-dimensional convex body K does there exist a straight line L through the center of K, and two-dimensional sections $\tilde{P}_1, \ldots, \tilde{P}_k$ through L, such that \tilde{P}_j is affinely equivalent to P_j for $j = 1, \ldots, k$.

Clearly, $k \ge 3$. In the present note we shall show that k = 3.

Let P_1^{ϵ} be a square, P_2^{ϵ} a circle, and P_3^{ϵ} a square of side 2 with corners rounded off by circular arcs of radius ϵ (see Figure 1.). Clearly, only P_3^{ϵ} depends on ϵ .

THEOREM. There exists an $\varepsilon > 0$ such that there exists no centrally symmetric, 3-dimensional convex body K_{ε} admitting a line L through its center and sections $\tilde{P}_{1}^{\varepsilon}$, $\tilde{P}_{2}^{\varepsilon}$, $\tilde{P}_{3}^{\varepsilon}$ through L, such that $\tilde{P}_{j}^{\varepsilon}$ is affinely equivalent to P_{j}^{ε} , j = 1, 2, 3.

Fig. 1.

Proof. Suppose that for each $\varepsilon > 0$ such body K_{ε} exists. Let t be one of the intersection points of L with the boundary B_{ε} of K_{ε} . Then t can not be an exposed point of $\tilde{P}_{1}^{\varepsilon}$ because t belongs also to the sections $\tilde{P}_{2}^{\varepsilon}$ and $\tilde{P}_{3}^{\varepsilon}$, which are smooth. (See [3]). Hence t is not an external point of $\tilde{P}_{1}^{\varepsilon}$. Since $\tilde{P}_{2}^{\varepsilon}$ is strictly convex, t must belong to the relative interior of one of the curved arcs of $\tilde{P}_{3}^{\varepsilon}$. (See [3]).

Being interested only in affine properties we may assume, without loss of generality, that \tilde{P}_2^{ϵ} is a unit circle in the plane z = 0, and that \tilde{P}_3^{ϵ} is homothetic to P_3^{ϵ} and situated in the plane y = 0. Then \tilde{P}_1^{ϵ} is a parallelogram in some plane $z = \alpha y$. We shall investigate the relationship between α and ϵ .

Let p_i be the boundary of $\tilde{P}_{j}^{e}, j = 1, 2, 3$. The three curves p_1, p_2, p_3 intersect at the point *t*. Since p_3 is a normal section of B_e , the normal curvature κ_3 of B_e in direction p_3 (at *t*) is equal to the total curvature of p_3 , which is $\geq 1/\epsilon$. The total curvature of p_2 at *t* is equal to 1, hence the normal curvature κ_2 of p_2 is at most 1.

Now B_{ϵ} is convex, and p_1 is a straight line in a neighborhood of t; hence the minimal curvature of B_{ϵ} at t is $\kappa_1 = 0$. The maximal normal curvature κ_2^0 of B_{ϵ} at t is in a direction perpendicular to that of p_1 . Using Euler's formula we may express the normal curvatures of B_{ϵ} in directions p_3 and p_2 by

$$\kappa_3 = \kappa_2^0 \cos^2 \beta$$
$$\kappa_2 = \kappa_2^0 \sin^2 \beta,$$

where β is the angle between P_2 and P_1 at the point *t*. Therefore $\kappa_3/\kappa_2 = \operatorname{ctg}^2 \beta$; since $\kappa_3/\kappa_2 \ge 1/\varepsilon$ it follows that $\beta \to 0$ for $\varepsilon \to 0$, which trivially implies that $\alpha \to 0$ when $\varepsilon \to 0$.

Since for each ε the points (1, 0, 0) and (-1, 0, 0) belong to B_{ε} it follows that for $\varepsilon \to 0$ the set $\tilde{P}_1^{\varepsilon} = K_{\varepsilon} \cap \{(x, y, z) : z = \alpha y\}$ tends to

$$K_{\varepsilon} \cap \{(x, y, z) : z = 0\} = \{(x, y, z) : z = 0, \alpha^2 + y^2 \leq 1\}.$$

But this is impossible because \tilde{P}_2^{ϵ} is a unit circle and \tilde{P}_1^{ϵ} is a parallelogram.

This completes the proof of the theorem.

Using standard approximation and compactness arguments it is easy to deduce from the theorem the following

COROLLARY. There exist centrally symmetric convex polygons P_1 , P_2 , P_3 , such that no centrally symmetric 3-dimensional convex body has three coaxial central sections affinely equivalent to P_1 , P_2 , respectively P_3 . Moreover, P_1 may be chosen as a square, and p_2 as a regular polygon of sufficiently many sides.

The author wishes to express his warmest thanks to Professor B. Grünbaum for his help in the preparation for print of this note.

1966]

S. ROLEWICZ

References

1. S. Banach and S. Mazur, Zur Theorie der Linearen Dimension, Studia Math. 4 (1933), 100-112.

2. C. Bessaga, A note on universal Banach spaces of a finite dimension, Bull. Acad. Polon. Sci. 6 (1958), 97-101.4

3. B. Grünbaum, On a problem of S. Mazur, Bull. Res. Council Israel 7F (1958), 133-135.

4. V. Klee, Polyhedral sections of convex bodies, Acta Math. 103 (1960), 243-267.

MATHEMATICAL INSTITUTE

OF THE POLISH ACADEMY OF SCIENCES, WARSAW